NSK
NSK

Digitalni akademski repozitorij (DAR)

time: 0.002701997756958
 
Naslov:Kartografska analiza karata Papinske Države J. R. Boškovića i Ch. Mairea : doktorski rad / Marina Triplat Horvat
Vrsta:Disertacija, tekst
Područje: Geodezija
Predmet:Josip Ruđer Bošković, parametri Boškovićeva elipsoida, kartografska projekcija, stare zemljopisne karte, Euklidska udaljenost, Papinska Država, Bošković-Laplaceova metoda izjednačenja
Voditelj(i):Lapaine, Miljenko
Datum objave: 2014
Jezik:hrvatski (hrv)
Format:application/pdf
Sažetak (hr):
U ovom doktorskom radu sustavno analiziram dvije srodne karte Papinske Države,Nuova carta geografica dello Stato Ecclesiastico i Carte de l'État de l'Église. Karte su izdane u 18. stoljeću u razmaku od 15 godina, a prikazuju područje središnje Italije. Prva karta, Nuova carta geografica dello Stato Ecclesiastico, izdana je 1755. godine, nakon opsežne geodetske izmjere koju su proveli Josip Ruđer Bošković i Christopher Maire kada su određivali duljinu luka meridijana između Rima i Riminija na području tadašnje Papinske Države. Mjerilo druge karte, Carte de l'État de l'Église, iz 1770. umanjeno je na trećinu u odnosu na kartu iz 1755. godine i prikazuje isto područje.Analizu sam provela na digitalnim kopijama karata u visokoj rezoluciji i originalnoj veličini, primjenom različitih kartometrijskih tehnika te primjenom metode teorije kartografskih projekcija. Cilj je istraživanja bio definirati kartografsku projekciju u kojoj su karte izrađene, definirati dimenzije Zemljina elipsoida iz mjerenih duljina luka meridijana te ispitati pet postavljenih hipoteza. Za određivanje kartografske projekcije u kojoj je neka stara karta izrađena bez poznatog podatka o projekciji, predložena je metoda euklidskih udaljenosti za ispitivanje oblika kartografske mreže koja je nacrtana na karti. U doktorskom radu predlažem novi postupak za određivanje parametara projekcije starih karata, posebno standardnih paralela, ako nije poznat radijus sfere u kojoj je karta izrađena. Uvedena je konstanta Ckoja je omjer konstante K i radijusa sfere R koji za kartu nisu poznati. Dokazala sam da su Nuova carta geografica dello Stato Ecclesiastico i Carte de l'État de l'Église izrađene u uspravnoj konusnoj projekciji sfere ekvidistantnoj uzduž meridijana. Za određivanje dimenzija Boškovićeva elipsoida korištena je Bošković-Laplaceova metoda izjednačenja. Parametri Boškovićeva elipsoida određeni su iz devet duljina luka meridijana koje je Bošković upotrebljavao u svojim djelima opisujući svoju metodu izjednačenja.
Sažetak (en):
Due to the fact that two related maps of the Papal States, Nuova carta geografica dello Stato Ecclesiastico and Carte de l'Etat de l'Église, hasn’t been sufficiently studied yet, Ihave conducted a systematic cartographic analysis in the dissertation, that will give answers to some of the questions which either remained opened, after previous researches, or their results were wrong. In the Introduction of the dissertation, it is described what the motivation for the carried out research was, as well as the hypotheses and research objectives with their expected scientific contribution.A review of previously published articles of the Bošković-Laplace's adjustment method and the articles that describe the J. R. Bošković's and C. Maire's maps of the Papal States are given in the second chapter of the dissertation.Through the third chapter of the dissertation, I got acquainted with the basic elements ofmaps, which are: title, type, orientation and displayed area of the map, the aim and a purpose of the map. In addition, the contents of the maps were studied through their basic topographical elements. In this chapter, I confirmed three hypotheses. I proved that the longitudes on the maps of the Papal States had been determined in relation to the prime meridian of Ferro and that the locations of the cities on the maps of the Papal States had been more accurate than the locations of the cities depicted on other similar maps of that time. Moreover, I proved that Ch. Maire and J. R. Bošković are the authors of the Nuova carta geografica dello Stato Ecclesiastico, and that most likely, J. R. Bošković or Ch. Maire are not the authors of the Carte de l'Etat de l'Église.In the fourth chapter of this dissertation I conducted a systematic study on the nine lengths of the meridian arcs which Bošković had used to calculate the flattening of the Earth. I described where the measurements had been carried out, who had completedthose measurements and pointed out the discrepancies between the values of the length of the meridian arcs, published in the literature. I presented the formula for calculating the length of the meridian arc, which had been used by Bošković in his analysis, to calculate the values of the meridian arc length at mid-latitudes in nine places. I compared the calculated and measured length of the meridian arcs. Subsequently, I videscribed geometrically and analytically, in detail, Bošković's adjustment method. With the help of the method I calculated parameters of the Bošković’s ellipsoid.In the fifth chapter, I conducted a procedure of determining the map projection in which the maps of the Papal States had been made. At the beginning of the chapter, there is an overview of map projections, used in the Renaissance era until the 18th century. I defined the estimation accuracy for the mathematical basis a priori, due to the nature of the procedure to determine which map projection the map had been made in, based on the drawn graticule on the map. The process of determining the map projection includes questions such as: Are the meridians straight or curved lines? Are the parallels straight or curved lines? If the parallels are curved, are they concentric circular arcs? What is the distance between the drawn parallels? To answer these questions and determine the map projection in which the map is made, there is a need to test the straightness or roundness of the meridians and parallels, the convergence of meridians and parallels’concentricity.I examined meridian straightness and curvature (roundness) of the parallels drawn on a map, with the help of the Euclidean distance method. After defining the map projection,according to the shape of the map projections, I defined the map projection by type of the deformations. In order to fully define the type of the map projection, I calculated the angle at which the meridians are intersected. By calculating the distance between the parallels along the meridians I proved that the map had been made in the projection equidistant along the meridians. By calculating the coefficient of proportionality k, i.e. the angle at which the meridians intersect, I proved that the map had been made in the conic projection. With the demonstrated method I learned that the Nuova carta geografica dello Stato Ecclesiastico had been made in a normal aspect conic projectionwhich is equidistant along the meridians, therefore I proved that the map had not been made in polyhedral projection.After defining the map projection, I calculated the parameters of the projection in which the map had been made. The process of determining the parameters of the equidistant conic projection did not pass without problems. It revealed that the biggest problem was in determining the point of common intersection of meridians, which is also the centreof the circular arcs of the parallels. That point directly affects the determination of the coefficient of proportionality k, i.e. the angle at which the meridians intersect. Therefore, viiI proposed a new method for determining the parameters of the projection of the old maps, especially when determining the standard parallels, if the radius of the sphere in which the map was made is not known. The constant C was introduced, the ratio of constant K and the size of the radius of the sphere R of the map that are not known.In the same chapter I rejected the hypothesis that the cartographic projection of old mapBošović’s and Maire’s maps had been based on the dimensions of the ellipsoid determined from measurements of the lengths of the meridian arcs. I examined thathypothesis by comparing the calculated distance between the parallels on the sphere and the ellipsoid.By decreasing the size of the map Nuova carta geografica dello Stato Ecclesiastico to size and scale of the Carte de l'Etat de l'Église and by comparing the contents of the maps, particularly the locations of the cities on both maps, I proved that the Carte de l'Etat de l'Église had been made in the same normal aspect conic projection which is equidistant along the meridians as well as the Nuova carta geografica dello Stato Ecclesiastico. The process of determining the map projection for the Carte de l'Etat de l'Église differed from previously described method because the graticule had not been drawn on the map.In the sixth chapter the guidelines were given for the future research. The systematic analysis of the answers to the appointed hypothesis was given in the conclusion.
big_sql: 0.00047707557678223 | sql_other: 0.00382399559021